Week No.	Week of	Lecture reference (Griffiths)	Торіс	Problem Set No.	Due 5 PM on
1	20-Jan	1.1.5, 1.3.2-1.3.6 1.4-1.6 1.4-1.6	Vector and tensor transformations, fundamental theorems Curvilinear coordinates, Dirac delta function, theory of vector fields		
2	27-Jan	2.1-2.2.3 2.2.4-2.3 2.4, 2.5.1	Electrostatic fields, Gauss's law Electrostatic potential and boundary conditions Electrostatic work and energy, conductors	1	31-Jan
3	3-Feb	3.1.1-3.1.4 3.1.5, 3.2.1-3.2.2 3.3.1	Laplace's and Poisson's equation, simple and relaxation solutions Uniqueness of solution, method of images Separation of variables in Cartesian coordinates	2	7-Feb
4	10-Feb	3.4.2, 3.4.4 4.1-4.2.1 4.3-4.4.1	Ideal electric dipole and its field Forces and torques on electric dipoles; polarization Gauss's law in dielectrics, D , linear dielectrics	3	14-Feb
5	17-Feb	4.4.3-4.4.4 5.1.1-5.1.2 5.1.3	Energy in dielectrics, forces on dielectrics Lorentz force law, particle trajectories in static fields Current, forces on wires, current densities; charge conservation	4	21-Feb
6	24-Feb	5.2, 5.3.1-5.3.2 5.3.2 (27-Feb)	Biot-Savart law, divergence of B Ampere's law MIDTERM 1 (covers PS 1-4)		
7	3-Mar	5.3.3-5.3.4 5.4.1-5.4.2 5.4.3	Applications of Ampere's law, static Maxwell equations Vector potential, magnetostatic boundary conditions Ideal magnetic dipole and its field	5	7-Mar
8	10-Mar	6.1.1-6.1.2, 6.1.4 6.3, 6.4.1 6.4.2	Forces and torques on magnetic dipoles; magnetization Ampere's law in magnetic materials, H , linear magnetic media Ferromagnetism	6	14-Mar
9	17-Mar	7.1 7.2.1-7.2.2 7.2.3-7.2.4	Ohm's law, EMF Faraday's law Energy in magnetic fields, inductance	7	21-Mar
	24-Mar		SPRING RECESS		
10	31-Mar	7.3.1-7.3.3 7.3.5-7.3.6 10.1	Maxwell's equations in free space Maxwell's equations in matter, boundary conditions Maxwell's equations for potentials; gauge transformations	8	4-Apr
11	7-Apr	8.1.1 8.1.2 (10-Apr)	Continuity equation Poynting's theorem MIDTERM 2 (covers PS 1-8)		
12	14-Apr	9.1.1-9.1.2 9.2 9.3.1-9.3.2	Wave equation in one dimension, general solution, sinusoidal waves EM waves in vacuum, energy and momentum EM waves in a linear insulator, reflection at normal incidence	9	18-Apr
13	21-Apr	11.1.1-11.1.2 11.1.1-11.1.2 9.1.4	EM fields of an oscillating electric dipole Electric dipole radiation and power Polarization and angular momentum of EM waves	10	25-Apr
14	28-Apr	9.4.1-9.4.2 9.5.1, 9.5.3	Jones vectors: how to control polarization EM waves in a conductor, reflection at normal incidence EM waves in a coaxial cable	11	2-May
15	5-May	 	Interference and coherence of >1 dipole radiator Radiation pattern from >1 dipole Connection to diffraction (Babinet)	12	9-May
16	12-May	 (13-May)	Review INSTRUCTION ENDS		,
17	19-May	 (20-May)	110A FINAL EXAM (Group 9, 8-11 AM) (covers PS 1-12)		